CO₂ Removal by the Benfield Process

				_			
Stream No.	1	12	3	5	Stream No.	11	4
Name	GAS FEED	Purified gas	Purge	C02	Name	Lean	Rich
Overall					Overall		
Temp C	33.00	83.70	85.35	93.70	Molar flow kmol/hr	6923.38	6895.29
					Mass flow kg/hr	163428.52	168078.61
Pres bar	22.20	21.50	1.50	1.30	Temp C	83.49	86.35
Actual vol m3/h	1888.10	2197.04	129.59	7192.02	Pres bar	28.50	1.50
Std vap 0 C m3/h	38558.52	36527.91	146.49	6925.31	Liquid only -		
Component mole fractions					PH value	11.19	10.03
Ethylene	0.1959	0.2050	0.3009	0.0007	Flowrates in kmol/		
- Oxygen	0.0453	0.0479	0.0155	0.0000	Carbon Dioxide	0.01	0.16
					- Vater	5550.93	5407.38
Carbon Dioxide	0.0582	0.0000	0.0503	0.3792			
Water	0.0005	0.0170	0.2709	0.5198	K Carbonate	0.00	0.00
Nitrogen	0.0248	0.0253	0.0054	0.0000	H+	0.00	0.00
-					OH-	2.32	0.30
Argon	0.0509	0.0543	0.0394	0.0000	C03	432.08	317.09
Methane	0.5008	0.5347	0.3151	0.0002	HC03-	35.78	267.78
Ethane	0.0035	0.0038	0.0015	0.0000	K+	902.26	902.26

DESCRIPTION:

What you can see in the picture above is the simulation of an existing plant to remove CO2 from a process stream by absorption/regeneration with a hot potassium carbonate solution. CO2 is absorbed by chemical reaction, and it is the type of calculations CHEMCAD 5 Electrolyte Package has been made for.

This sort of simulation requires applying the True Species Approach, where regular components and electrolyte species are treated equally.

CHEMCAD 5 has a database of ionic reactions built-in. Many industrially important systems have been covered. In case some reaction data are missing, CHEMCAD 5 would try to calculate equilibrium coefficients. Electrolyte Regression facility is also available.